Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2440: 77-90, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35218533

RESUMO

Caveolae are bulb-shaped invaginations of the plasma membrane that are enriched in specific lipids including cholesterol, phosphatidylserine and sphingolipids. Caveolae have many described cellular roles and functions, including endocytic transport, transcytosis, mechanosensing, and serving as a buffer against plasmalemmal stress. Caveola are formed through interactions between integral membrane proteins (Caveolin) and a cavin family of peripheral proteins (Cavins). Nearly half of the human proteome resides within or at the surface of membranes. Studying protein-protein interactions, especially of transmembrane domain containing proteins can be challenging. Fortunately, sophisticated biophysical methods allow for the monitoring of protein interactions in intact cells. Here, we describe the principles of Förster resonance energy transfer, fluorescence lifetime, and how their properties can be used to assess protein-protein interactions. Additionally, we discuss and demonstrate how fluorescence lifetime can be monitored microscopically thereby providing caveolin-cavin interaction data from living cells.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Microscopia , Caveolina 1/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Methods Enzymol ; 652: 49-79, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34059290

RESUMO

Ion channel are embedded in the lipid bilayers of biological membranes. Membrane phospholipids constitute a barrier to ion movement, and they have been considered for a long time as a passive environment for channel proteins. Membrane phospholipids, however, do not only serve as a passive amphipathic environment, but they also modulate channel activity by direct specific lipid-protein interactions. Phosphoinositides are quantitatively minor components of biological membranes, and they play roles in many cellular functions, including membrane traffic, cellular signaling and cytoskeletal organization. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is mainly found in the inner leaflet of the plasma membrane. Its role as a potential ion channel regulator was first appreciated over two decades ago and by now this lipid is a well-established cofactor or regulator of many different ion channels. The past two decades witnessed the steady development of techniques to study ion channel regulation by phosphoinositides with progress culminating in recent cryoEM structures that allowed visualization of how PI(4,5)P2 opens some ion channels. This chapter will provide an overview of the methods to study regulation by phosphoinositides, focusing on plasma membrane ion channels and PI(4,5)P2.


Assuntos
Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositóis , Membrana Celular , Canais Iônicos , Bicamadas Lipídicas
3.
J Neurosci ; 39(31): 6067-6080, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31127000

RESUMO

The cold- and menthol-sensitive transient receptor potential melastatin 8 (TRPM8) channel is important for both physiological temperature detection and cold allodynia. Activation of G-protein-coupled receptors (GPCRs) by proinflammatory mediators inhibits these channels. It was proposed that this inhibition proceeds via direct binding of Gαq to the channel. TRPM8 requires the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2 or PIP2] for activity. However, it was claimed that a decrease in cellular levels of this lipid upon receptor activation does not contribute to channel inhibition. Here, we show that supplementing the whole-cell patch pipette with PI(4,5)P2 reduced inhibition of TRPM8 by activation of Gαq-coupled receptors in mouse dorsal root ganglion (DRG) neurons isolated from both sexes. Stimulating the same receptors activated phospholipase C (PLC) and decreased plasma membrane PI(4,5)P2 levels in these neurons. PI(4,5)P2 also reduced inhibition of TRPM8 by activation of heterologously expressed muscarinic M1 receptors. Coexpression of a constitutively active Gαq protein that does not couple to PLC inhibited TRPM8 activity, and in cells expressing this protein, decreasing PI(4,5)P2 levels using a voltage-sensitive 5'-phosphatase induced a stronger inhibition of TRPM8 activity than in control cells. Our data indicate that, upon GPCR activation, Gαq binding reduces the apparent affinity of TRPM8 for PI(4,5)P2 and thus sensitizes the channel to inhibition induced by decreasing PI(4,5)P2 levels.SIGNIFICANCE STATEMENT Increased sensitivity to heat in inflammation is partially mediated by inhibition of the cold- and menthol-sensitive transient receptor potential melastatin 8 (TRPM8) ion channels. Most inflammatory mediators act via G-protein-coupled receptors that activate the phospholipase C pathway, leading to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. How receptor activation by inflammatory mediators leads to TRPM8 inhibition is not well understood. Here, we propose that direct binding of Gαq both reduces TRPM8 activity and sensitizes the channel to inhibition by decreased levels of its cofactor, PI(4,5)P2 Our data demonstrate the convergence of two downstream effectors of receptor activation, Gαq and PI(4,5)P2 hydrolysis, in the regulation of TRPM8.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Feminino , Gânglios Espinais/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Front Physiol ; 8: 732, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29081749

RESUMO

The systemic circulation offers larger resistance to the blood flow than the pulmonary system. Consequently, the left ventricle (LV) must pump blood with more force than the right ventricle (RV). The question arises whether the stronger pumping action of the LV is due to a more efficient action of left ventricular myosin, or whether it is due to the morphological differences between ventricles. Such a question cannot be answered by studying the entire ventricles or myocytes because any observed differences would be wiped out by averaging the information obtained from trillions of myosin molecules present in a ventricle or myocyte. We therefore searched for the differences between single myosin molecules of the LV and RV of failing hearts In-situ. We show that the parameters that define the mechanical characteristics of working myosin (kinetic rates and the distribution of spatial orientation of myosin lever arm) were the same in both ventricles. These results suggest that there is no difference in the way myosin interacts with thin filaments in myocytes of failing hearts, and suggests that the difference in pumping efficiencies are caused by interactions between muscle proteins other than myosin or that they are purely morphological.

5.
Front Cardiovasc Med ; 2: 35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664906

RESUMO

Contraction of muscles results from the ATP-coupled cyclic interactions of the myosin cross-bridges with actin filaments. Macroscopic parameters of contraction, such as maximum tension, speed of shortening, or ATPase activity, are unlikely to reveal differences between the wild-type and mutated (MUT) proteins when the level of transgenic protein expression is low. This is because macroscopic measurements are made on whole organs containing trillions of actin and myosin molecules. An average of the information collected from such a large assembly is bound to conceal any differences imposed by a small fraction of MUT molecules. To circumvent the averaging problem, the measurements were done on isolated ventricular myofibril (MF) in which thin filaments were sparsely labeled with a fluorescent dye. We isolated a single MF from a ventricle, oriented it vertically (to be able measure the orientation), and labeled 1 in 100,000 actin monomers with a fluorescent dye. We observed the fluorescence from a small confocal volume containing approximately three actin molecules. During the contraction of a ventricle actin constantly changes orientation (i.e., the transition moment of rigidly attached fluorophore fluctuates in time) because it is repetitively being "kicked" by myosin cross-bridges. An autocorrelation functions (ACFs) of these fluctuations are remarkably sensitive to the mutation of myosin. We examined the effects of Alanine to Threonine (A13T) mutation in the myosin regulatory light chain shown by population studies to cause hypertrophic cardiomyopathy. This is an appropriate example, because mutation is expressed at only 10% in the ventricles of transgenic mice. ACFs were either "Standard" (Std) (decaying monotonically in time) or "Non-standard" (NStd) (decaying irregularly). The sparse labeling of actin also allowed the measurement of the spatial distribution of actin molecules. Such distribution reflects the interaction of actin with myosin cross-bridges and is also remarkably sensitive to myosin mutation. The result showed that the A13T mutation caused 9% ACFs and 9% of spatial distributions of actin to be NStd, while the remaining 91% were Std, suggesting that the NStd performances were executed by the MUT myosin heads and that the Std performances were executed by non-MUT myosin heads. We conclude that the method explored in this study is a sensitive and valid test of the properties of low prevalence mutations in sarcomeric proteins.

6.
Am J Physiol Regul Integr Comp Physiol ; 306(4): R222-33, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24285364

RESUMO

Force production in muscle results from ATP-driven cyclic interactions of myosin with actin. A myosin cross bridge consists of a globular head domain, containing actin and ATP-binding sites, and a neck domain with the associated light chain 1 (LC1) and the regulatory light chain (RLC). The actin polymer serves as a "rail" over which myosin translates. Phosphorylation of the RLC is thought to play a significant role in the regulation of muscle relaxation by increasing the degree of skeletal cross-bridge disorder and increasing muscle ATPase activity. The effect of phosphorylation on skeletal cross-bridge kinetics and the distribution of orientations during steady-state contraction of rabbit muscle is investigated here. Because the kinetics and orientation of an assembly of cross bridges (XBs) can only be studied when an individual XB makes a significant contribution to the overall signal, the number of observed XBs was minimized to ∼20 by limiting the detection volume and concentration of fluorescent XBs. The autofluorescence and photobleaching from an ex vivo sample was reduced by choosing a dye that was excited in the red and observed in the far red. The interference from scattering was eliminated by gating the signal. These techniques decrease large uncertainties associated with determination of the effect of phosphorylation on a few molecules ex vivo with millisecond time resolution. In spite of the remaining uncertainties, we conclude that the state of phosphorylation of RLC had no effect on the rate of dissociation of cross bridges from thin filaments, on the rate of myosin head binding to thin filaments, and on the rate of power stroke. On the other hand, phosphorylation slightly increased the degree of disorder of active cross bridges.


Assuntos
Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Cadeias Leves de Miosina/metabolismo , Miosinas/metabolismo , Animais , Cinética , Contração Muscular/fisiologia , Fosforilação , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...